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We propose a novel method to find the community structure in complex networks based on an
extremal optimization of the value of modularity. The method outperforms the optimal modularity
found by the existing algorithms in the literature giving a better understanding of the community
structure. We present the results of the algorithm for computer simulated and real networks and
compare them with other approaches. The efficiency and accuracy of the method make it feasible
to be used for the accurate identification of community structure in large complex networks.

PACS numbers:

The description of the structure of complex networks
has been one of the focus of attention of the physicist’s
community in the recent years. The levels of descrip-
tion range from the microscopic (degree, clustering coef-
ficient, centrality measures, etc., of individual nodes) to
the macroscopic description in terms of statistical proper-
ties of the whole network (degree distribution, total clus-
tering coefficient, degree-degree correlations, etc.) [1–4].
Between these two extremes there is a ”mesoscopic” de-
scription of networks that tries to explain its community
structure. The general notion of community structure
in complex networks was first pointed out in the physics
literature by Girvan and Newman [5], and refers to the
fact that nodes in many real networks appear to group
in subgraphs in which the density of internal connections
is larger than the connections with the rest of nodes in
the network.

The community structure has been empirically found
in many real technological, biological and social networks
[6–12] and its emergence seems to be at the heart of the
network formation process [13].

The existing methods intended to devise the commu-
nity structure in complex networks have been recently
reviewed in [10]. All these methods require a definition
of community that imposes the limit up to which a group
should be considered a community. However, the concept
of community itself is qualitative: nodes must be more
connected within its community than with the rest of the
network, and its quantification is still a subject of debate.
Some quantitative definitions that came from sociology
have been used in recent studies [14], but in general, the
physics community has widely accepted a measure for the
community structure based on the concept of modularity
Q introduced by Newman and Girvan [15]:

Q =
∑

r

(err − a2
r) (1)

where err are the fraction of links that connect two nodes
inside the community r, ar the fraction of links that have
one or both vertices inside of the community r, and the
sum extends to all communities r in a given network.
Note that this measure provides a way to determine if a

certain mesoscopic description of the graph in terms of
communities is more or less accurate. The larger the val-
ues of Q the most accurate a partition into communities
is.

The search for the optimal (largest) modularity value
seems to be a NP-hard problem due to the fact that the
space of possible partitions grows faster than any power
of the system size . For this reason, a heuristic search
strategy is mandatory to restrict the search space while
preserving the optimization goal [16, 17]. Indeed, it is
possible to relate the current optimization problem for Q
with classical problems in statistical physics, e.g. the spin
glass problem of finding the ground state energy [18], or
the ground state energy of a Potts model [27, 30] where
algorithms inspired in natural optimization processes as
simulated annealing [19] and genetic algorithms [20] have
been successfully used.

In this Letter, we propose a new divisive algorithm
that optimizes the modularity Q using an heuristic search
based on the Extremal Optimization (EO) algorithm pro-
posed by Boettcher and Percus [21, 22]. This algorithm
is inspired in turn in the evolution model of Bak-Sneppen
[23], and basically operates optimizing a global variable
by improving extremal local variables that involve co-
evolutionary avalanches. The performance of EO algo-
rithms have been shown to overcome the efficiency of
classical simulated annealing and genetic algorithms pro-
viding competitive accuracy [24, 25].

In our case, the global variable to optimize is Q as
defined in Eq.(1). Thus, the definition of the local vari-
ables used in the extremal optimization problem should
be related to the contribution of individual nodes i to
the summation in Eq.(1) given a certain partition into
communities

qi = κr(i) − kiar(i) (2)

where κr(i) is the number of links that a node i be-
longing to a community r has with nodes into the same
community, and ki is the degree of node i. Note that
Q = 1

2L

∑
i qi where i refers to all nodes in the network

given a certain partition into communities and L is the
total number of links in the network. Eq.(2) provides a
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measure that depends on the node degree, and its nor-
malization involve all the links in the network after sum-
mation. Re-scaling the local variable qi by the degree of
node i we obtain a proper definition for the contribution
of node i to the modularity, relative to its own degree
and normalized in the interval [-1,1].

λi =
qi

ki
=

κr(i)

ki
− ar(i) (3)

Keeping in mind this definition of λi we can compare
the relative contribution of individual nodes to the com-
munity structure. We will consider λi as the local vari-
able involved in the extremal optimization process that
characterizes an individual node, from now on we will re-
fer to λi as the fitness of node i using the common jargon
in extremal optimization problems.

The heuristic search we propose to find the optimal
modularity value evolves as follows:

• Initially, we split the nodes of the whole graph in
two random partitions having the same number of
nodes each one. This splitting creates an initial
communities division, where communities are un-
derstood as connected components in each parti-
tion.

• At each time step, the system self-organizes by
moving the node with the lower fitness (extremal)
from one partition to the other. In principle, each
movement implies the recalculation of the fitness of
many nodes because the right hand side of equation
(3) involves the pseudo-global magnitude ar(i).

• The process is repeated until an ”optimal state”
with a maximum value of Q is reached. After that,
we delete all the links between both partitions and
proceed recursively with every resultant connected
component. The process finishes when the modu-
larity Q could not be improved [36].

Note that this process is not a bipartitioning of the
graph as known in computer science [22], because: the
number of nodes in each partition is dependent on the
evolution process and not restricted to be the same at the
end of the process; and more importantly, each partition
could contain different connected components (commu-
nities) that when the partitions are disconnected result
in several subgraphs.

Let us illustrate the above mentioned heuristics in a
simple case. We will apply it to the well-know Zachary
karate club network [26]. Initially we split the nodes in
two random partitions (see Fig.1 left). Note that the
number of initial communities (connected components in
each partition) in this case is five (see Fig.1 right). After
that, the self-organization process starts: the node with
the ”worst fitness” is selected and moved from its parti-
tion to the other partition, this movement provokes an
avalanche of changes in the fitness of the rest of nodes.
We calculate the new value for the modularity Q, and

FIG. 1: Left: Random initialization of the Zachary network
into two partitions, red and green. Right: Five different com-
munities identified as connected components in each parti-
tions. Each color defines a different community.

again repeat the process until no changes could improve
it (see Fig. 2).

The application of the algorithm to the Zachary net-
work provides the optimal modularity value after three
recursive iterations. The network is decomposed in four
communities and the value for the modularity is 0.419,
greater than the value 0.381 reported by Newman [16],
the value 0.406 reported by Reichardt et al. [27] and the
value 0.412 reported by Donetti et al. [28] using different
optimization methods.

The extremal optimization (EO) approach presented
here has several technical implementation details that are
relevant for our purposes. In the original EO algorithm,
the node selected is always the node with the worst λj

value. This is a deterministic and fast way to solve the
problem, but it presents some drawbacks: the final re-
sult strongly depends on the initialization and there is
no possibility to escape from local maxima. Instead, we
use a probabilistic selection called τ -EO [21], in which
the nodes are ranked according to their fitness values,
and then the node of rank q is selected according to the
following probability distribution:

0 50 100 150 200 250 300
Algorithm Steps

0.1

0.2

0.3

0.4

Q

First Cut Second Cut Third Cut
Q = 0.3718 Q = 0.4020 Q = 0.4188

FIG. 2: Top: Network after edge removal at each recursive
cut. Bottom: Evolution of the Q value at each step of the
adaptation process. Separation bars indicate recursive divi-
sions of the graph performed at maximum Q.
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P (q) ∝ q−τ (4)

This solution is less sensitive to different initializations
and allows to escape from local maxima. The exponent
τ has been tuned around the optimal values obtained
for random networks of size N that approach the scaling
τ ∼ 1 + 1/ln(N) [21]. The use of this technique also im-
plies the determination of the number of self-organization
steps αN needed to decide that the maximum value has
little chance to be improved. In practice, we keep track
at each step of the last maximum value obtained for Q, if
this maximum is not improved in αN steps we stop the
search. Usually α is empirically determined balancing
accuracy and efficiency in the algorithm, we use α = 1
allowing as many steps as nodes to improve the current
maximum value of Q. The computational cost involved
in the whole process is O(N2ln2N) where a factor NlnN
is the cost associate to the ranking process, however it
can be substantially reduced using heap data structures
[29] for the ranking selection process up to O(N). The
total cost of the algorithm can then be improved up to
O(N2lnN).

To test the performance of the algorithm we use first
computer-generated graphs with a known community
structure [5]. These graphs have 128 vertices grouped in
four communities of 32 vertices. Each vertex has on aver-
age zin edges to vertices in the same community and zout

edges to vertices in other communities, keeping an aver-
age degree zin + zout = 16. We generate several graphs
using zout values between 0 and 10, and compare the
results of our algorithm with those obtained using the
heuristics proposed by Newman [16]. This shows the ca-
pabilities of each algorithm identifying the communities
when these are more fuzzy inside the whole network. Us-
ing the Girvan-Newman algorithm, which is the reference
algorithm for community identification, the communities
are well detected until values of zout = 6. In contrast, our
algorithm detects the communities up to zout = 8, where
the community structure still persist but is much more
difficult to reveal, see Fig.3 . In this particular case 50
percent of the links are within the community and 50 per-
cent are links with nodes outside the community. This
result that could seem contradictory is not. Note that
the 50 per cent of links with nodes outside the commu-
nity are, in average, equally distributed among the rest of
communities, and then its contribution to the definition
of community is deprived by the number of communities
in the rest of the network, in our case three. For this
reason it is expected to find community structure even
in these cases.

For values higher than 8, the average maximum mod-
ularity rapidly approach the limit Q = 0.208 (see inset
Fig.3), the expected modularity for a random network
with the same number of links and nodes, as it has been
shown in [30].

We have also analyzed the community structure of sev-
eral real networks: the jazz musicians network [31], an
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FIG. 3: Fraction of nodes correctly classified using computer-
generated graphs described in the text. Each point is an av-
erage over 100 different networks. The fraction of nodes cor-
rectly classified we represent follows the definition proposed
by Newman in [16]. Inset: Average of the maximum modu-
larity obtained at each point.

university e-mail network [13], the C.elegans metabolic
network [32], a network of users of the PGP algorithm for
secure information transactions [33], and finally the rela-
tions between authors that shared a paper in cond-mat
[34].

Network Size QN #comsN QEO #comsEO

Zachary 34 0.3810 2 0.4188 4

Jazz 198 0.4379 4 0.4452 5

C. elegans 453 0.4001 10 0.4342 12

E-mail 1133 0.4796 13 0.5738 15

PGP 10680 0.7329 80 0.8459 365

Cond-Mat 27519 0.6683 302 0.6790 647

TABLE I: Maximum modularity obtained using the algorithm
[16] QN and the extremal optimization algorithm QEO for
different complex networks. It is also included the number of
communities found at the configuration with maximum mod-
ularity.

In Table I we present the results for the maximum
modularity achieved by our algorithm compared to the
modularity obtained using [16]. The difference in maxi-
mum modularity is up to 15% depending on the network
considered. These differences result in a best determina-
tion of the unknown community structure of the whole
network. The partition into communities is clearly dif-
ferent for large networks, as shows the different number
of communities found using both algorithms.

Note that since the core of the algorithm is stochastic,
different runs could yield in principle different partitions.
We have performed 100 runs of the algorithm for the e-
mail network and for a random network with the same
number of links and nodes to check the consistency of
the proposed method. In Fig. 4 we present the results
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of the fraction of times a couple of nodes are classified in
the same partition. The community structure is clearly
revealed for the e-mail network while for the random net-
work this structure is inexistent. Recently, Guimerà and
Amaral have obtained similar results by applying simu-
lated annealing to find the community structure in the
context of metabolic networks [35].

Summarizing, we have presented an extremal optimiza-
tion based algorithm that optimizes the modularity and
allows an accurate identification of community structure
in complex networks. The results outperform all previous
algorithms existent in the literature.
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R. Guimerà for helpful comments and suggestions. We
also thank M.E.J. Newman for providing us the cond-
mat network. This work has been supported by DGES
of the Spanish Government Grant No. BFM-2003-08258
and EC-FET Open Project No. IST-2001-33555.

FIG. 4: Fraction of nodes classified in the same partition over
100 realizations of the algorithm. The color of the position
(i,j) corresponds to the fraction of times that nodes i and j
belong to the same partition.
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[13] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and

A. Arenas, Phys. Rev. E 68, 065103(R) (2003).
[14] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and

D. Parisi, Proc. Natl. Acad. Sci. 101, 2658 (2004).
[15] M. E. J. Newman and M. Girvan, Phys. Rev. E 69,

026113 (2004).
[16] M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).
[17] A. Clauset, M. E. J. Newman, C. Moore, Phys. Rev. E

70, 066111 (2004).
[18] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,

1792 (1975).
[19] S. Kirkpatrick, C. Gilatt, and M. Vecchi, Science 220

(1983).
[20] D. E. Goldberg, Genetic Algorithms in Search, Opti-

mization, and Machine Learning (Addison-Wesley Pro-

fessional, 1989).
[21] S. Boettcher and A. G. Percus, Phys. Rev. Lett. 86, 5211

(2001).
[22] S. Boettcher and A. G. Percus, Phys Rev E 64, 026114

(2001).
[23] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).
[24] S. Boettcher and A. G. Percus, Artificial Intelligence 119,

275 (2000).
[25] S. Boettcher and P. Sibani, cond-mat/0406543 (2004).
[26] W. W. Zachary, Journal of Anthropological Research 33

(1977).
[27] J. Reichardt and S. Bornholdt, Phys. Rev. Lett 93,

218701 (2004).
[28] L. Donetti and M. Munoz, J. Stat. Mech.: Theor. Exp.

p. 10012 (2004).
[29] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Struc-

tures and Algorithms (Addison-Wesley, 1983).
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